
SAND REPORT
SAND2003-2952
Unlimited Release
Printed August 2003

Trilinos Users Guide

Michael A. Heroux and James M. Willenbring

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1110

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
IC

A



SAND2003-2952

Unlimited Release

Printed August 2003

Trilinos Users Guide

Michael A. Heroux and James M. Willenbring
Computational Math and Algorithms Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110

Abstract

The Trilinos Project is an effort to facilitate the design, development, inte-
gration and ongoing support of mathematical software libraries. A new soft-
ware capability is introduced into Trilinos as a package. A Trilinos package is
an integral unit usually developed by a small team of experts in a particular
algorithms area such as algebraic preconditioners, nonlinear solvers, etc.

The Trilinos Users Guide is a resource for new and existing Trilinos users.
Topics covered include how to configure and build Trilinos, what is required to
integrate an existing package into Trilinos and examples of how those require-
ments can be met, as well as what tools and services are available to Trilinos
packages. Also discussed are some common practices that are followed by
many Trilinos package developers. Finally, a snapshot of current Trilinos pack-
ages and their interoperability status is provided, along with a list of supported
computer platforms.

3



TrilinosTM Users Guide

Acknowledgments
The authors would like to acknowledge the support of the ASCI and LDRD pro-
grams that funded development of Trilinos and recognize all Trilinos contributors:
Teri Barth, Ross Bartlett, David Day, Bob Heaphy, Robert Hoekstra, Jonathan Hu,
Tammy Kolda, Richard Lehoucq, Kevin Long, Eric Phipps, Roger Pawlowski, An-
drew Rothfuss, Andrew Salinger, Paul Sery, Ken Stanley, Heidi Thornquist, Ray
Tuminaro and Alan Williams.

4



CONTENTS TrilinosTM Users Guide

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Typographical Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Getting Started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Obtaining a Copy of Trilinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Recommended Build Directory Structure . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Configuring Trilinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Trilinos Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Building Trilinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Tips for Making the Configure, Build, and Install Processes More

Efficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Testing the Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Ongoing Use and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Reporting Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Signing Up for Mail Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Appendix

Commonly Used CVS Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figures
1 Current collection of Trilinos Packages . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Recommended Layout for Trilinos Build Directories . . . . . . . . . . . . . . . 12

Tables
1 Typographical Conventions for This Document. . . . . . . . . . . . . . . . . . . 8

5



TrilinosTM Users Guide TABLES

Trilinos The name of the project. Also a Greek term which, loosely translated means
“a string of pearls,” meant to evoke an image that each Trilinos package is a
pearl in its own right, but is even more valuable when combined with other
packages.

Package A self-contained collection of software in Trilinos focused on one primary
class of numerical methods. Also a fundamental, integral unit in the Trilinos
framework.

new package A sample Trilinos package containing all of the infrastructure to install a new
package into the Trilinos framework. Contains the basic directory structure, a
collection of sample configuration and build files and a sample “Hello World”
package. Also a website.

Anasazi An extensible and interoperable framework for large-scale eigenvalue algo-
rithms.The motivation for this framework is to provide a generic interface to a
collection of algorithms for solving large-scale eigenvalue problems.

AztecOO Linear solver package based on preconditioned Krylov methods. A follow-on
to the Aztec solver package [7]. Supports all Aztec interfaces and functional-
ity, but also provides significant new functionality.

Belos A Greek term meaning “arrow.” Belos is the next generation of iterative
solvers. Belos solvers are written using “generic” programming techniques.
In other words, Belos is written using TSF abstract interfaces and therefore
has no explicit dependence on any concrete linear algebra library. Instead,
Belos solvers can be used with any concrete linear algebra library that imple-
ments the TSF abstract interfaces.

Ifpack Object-oriented algebraic preconditioner, compatible with Epetra and AztecOO.
Supports construction and use of parallel distributed memory precondition-
ers such as overlapping Schwarz domain decomposition, Jacobi scaling and
local Gauss-Seidel relaxations.

Komplex Complex linear equation solver using equivalent real formulations [1], built on
top of Epetra and AztecOO.

LOCA Library of continuation algorithms. A package of scalable stability analysis
algorithms (available as part of the NOX nonlinear solver package). When
integrated into an application code, LOCA enables the tracking of solution
branches as a function of system parameters and the direct tracking of bifur-
cation points.

Meros Segregated preconditioning package. Provides scalable block precondition-
ing for problems that couple simultaneous solution variables such as Navier-
Stokes problems.

6



TABLES TrilinosTM Users Guide

ML Algebraic multi-level preconditioner package. Provides scalable precondition-
ing capabilities for a variety of problem classes.

NOX A collection of nonlinear solvers, designed to be easily integrated into an
application and used with many different linear solvers.

Petra A Greek term meaning “foundation.” Trilinos has three Petra libraries: Epetra,
Tpetra and Jpetra that provide basic classes for constructing and manipulat-
ing matrix, graph and vector objects. Epetra is the current production version
that is split into two packages, one core and one extensions.

Epetra Current C++ production implementation of the Petra Object Model. The
“E” in Epetra stands for “essential” implying that this version provides
the most important capabilities that are commonly needed by our target
application base. Epetra supports real, double-precision floating point
data only (no single-precision or complex). Epetra avoids explicit use of
some of the more advanced features of C++, including templates and
the Standard Template Library, that can be impediments to portability.

Tpetra The future C++ version of Petra, using templates and other more ad-
vanced features of C++. Tpetra supports arbitrary scalar and ordinal
types, and makes extensive use of advanced C++ features.

Jpetra A Java implementation of Petra, supporting real, double-precision data.
Written in pure Java, it is designed to be byte-code portable and can be
executed across multiple compute nodes.

Teuchos A collection of classes and service software that is useful to almost all Trilinos
packages. Includes reference-counted pointers, parameter lists, templated
interfaces to BLAS, LAPACK and traits for templates.

TSF A collection of abstract interfaces that supports application access to a variety
of Trilinos capabilities, supports interoperability betweeen Trilinos packages
and provides future extensibility. TSF is composed of several packages. The
primary user packages are:

TSFCore TSFCore provides a basic collection of abstract interfaces to vectors,
linear operators, solvers, etc. These interfaces provide a common inter-
face for applications to access one or more packages that implement the
abstract interface. These interfaces can also be used by other packages
in Trilinos to accomplish the same purpose.

TSFExtended TSFExtended builds on top of TSFCore, providing implicit aggregation
capabilities and overloaded operators.

7



TrilinosTM Users Guide 1 Introduction

1 Introduction

The Trilinos Project is an effort to facilitate the design, development, integration and
ongoing support of mathematical software libraries. Trilinos also provides a set of
core utility libraries that provide common vector, graph and matrix capabilities, as
well as a common abstract interface for applications to access any appropriate
Trilinos package.

The overall objective of Trilinos is to promote rapid development and deployment
of high-quality, state-of-the-art mathematical software in an environment that sup-
ports interoperability of packages while preserving package independence.

The Trilinos Users Guide is meant to assist new and existing Trilinos users. Topics
covered include how to configure, build, and install Trilinos, as well as how to run
tests to insure proper installation. In addition, issue reporting and how to sign up
for and use Trilinos mail lists are discussed. Finally, directions for obtaining Trilinos
itself and documentation for individual Trilinos packages are provided.

For a higher-level view of the Trilinos project, please see An Overview of Trilinos [4].
A document is also available specifically for Trilinos developers; please see the
Trilinos Developers Guide [5]. The Developers Guide contains both tutorial and
general reference material.

The current set of packages in Trilinos is shown in Figure 1.

1.1 Typographical Conventions

Our typographical conventions are found in Table 1.

Notation Example Description
Verbatim text ../configure --enable-mpi Commands, directory and file name ex-

amples, and other text associated with
text displayed in a computer terminal win-
dow.

CAPITALIZED TEXT CXXFLAGS Environment variables used to configure
how tools such as compilers behave.

<text in angle brackets> ../configure <user parameters> Optional parameters.

Table 1. Typographical Conventions for This Document.

8



1.1
TypographicalC

onventions
Trilin

o
s

T
M

U
sers

G
uide

Basic Linear Algebra Libraries

Abstract Interfaces and Adaptors

"New Package"

Nonlinear Solvers

Linear SolversPreconditioners

Time Integration

Eigensolvers

Common Services

Primary Trilinos Packages
7/22/2003 - v9

Epetra: Current Production C++ Library
Epetra Core

Epetra Extensions

Tpetra: Next Generation C++ Library

Jpetra: Java Library
TSFCore: Basic Abstract classes

TSF Extensions: Aggregate/composite,
overloaded operators

TSF Utilities: Core utility classes

"Hello World":  Package Template to aid 
integration of new packages

Web site with layout and instructions

NOX: Collection of nonlinear solvers

LOCA: Library of Continuation Algorithms

Amesos:  OO Interfaces to 3rd party direct 
solvers

SuperLU

KundertSparse

SuperLUDist

DSCPack

UMFPack

MUMPS

AztecOO: Preconditioned Krylov Package 
based on Aztec

Komplex:  Complex solver via equivalent real 
formulations

Belos: Next generation Krylov and block 
Krylov solvers

ML:  Multi-level preconditioners

Meros:  Segregated/Block Preconditioners

IFPACK:  Algebraic preconditioners

TOX: Planned development

Anasazi: Collection of eigensolvers

Teuchos: Parameter Lists, BLAS Interfaces, 
etc

F
ig

u
re

1.
C

urrentcollection
ofTrilinos

P
ackages

9



TrilinosTM Users Guide 2 Getting Started

2 Getting Started

This chapter covers some of the
basics that a user will need to
know when beginning to use Trili-
nos. Specifically, we address
how to obtain, configure, build,
install and test Trilinos. We will
also discuss how to link to Trili-
nos libraries. Although this user
guide is current at the time of
printing, the Trilinos Project is
under active development. For
the most up-to-date information,
please visit the online Trilinos
Home Page. The most accurate
and complete information will be
kept at this site.

Tip: Check out the Trilinos Home Page at
http://software.sandia.gov/Trilinos.

At the website a user can:

• Find up-to-date information about Trili-
nos and its packages.

• Download Trilinos.

• Sign up for mail lists.

• Find documentation.

• Submit a bug report.

2.1 Obtaining a Copy of Trilinos

Trilinos can be obtained in two different ways. Users outside of Sandia most com-
monly download Trilinos in the form of a tarball from the Trilinos website at
http://software.sandia.gov/trilinos/downloads.html .

Users may be able to obtain a copy of Trilinos via the Trilinos CVS repository.
Access to the Trilinos repository is granted only to co-developers, Sandians, and
in select special cases.

To access the repository, an account on software.sandia.gov is required. In addi-
tion, the user account must be a in the “trilinos” and “cvs” groups on software.sandia.gov.
To request an account, send a note to trilinos-help@software.sandia.gov .
The following two environment variables must be set to access the repository:

Command: CVSROOT :ext:your user name@software.sandia.gov:/space/CVS

Command: CVS RSH ssh

Replace “your user name” with your user name on software.sandia.gov.

10



2.2 Recommended Build Directory Structure TrilinosTM Users Guide

To checkout a working copy of the development branch of Trilinos in the current
directory, type

Command: cvs checkout Trilinos

To checkout a working copy of a release branch of Trilinos in the current directory,
type

Command: cvs checkout -r name of release branch Trilinos

Replace “name of release branch” with the name of the release branch. The name
of the current release branch can be obtained by sending a note to
trilinos-help@software.sandia.gov .

To checkout a working copy of the development version of only one Trilinos pack-
age in the current directory, type

Command: cvs checkout <package name>

Replace “package name” with the name of the package. Please note that many
packages have dependencies on other Trilinos packages.

For those not familiar with CVS, a brief discussion covering some of the most
common CVS commands is available in Section 3.2. For a more complete listing
of CVS commands, see the GNU CVS Home Page [2].

2.2 Recommended Build Directory Structure

Via Autoconf and Automake the Trilinos configuration facilities provide a great deal
of flexibility for configuring and building the existing Trilinos packages. However,
unless a user has prior experience with Autotools, we very strongly recommend
the following process to build and maintain local builds of Trilinos.

To start, we defined two useful terms:

• Source tree - The directory structure where source files are found. A source
tree is obtained by expanding a distribution tar ball, or by checking out a copy
of the Trilinos repository.

• Build tree - The directory structure where object and library files, as well as
executables are located.

11



TrilinosTM Users Guide 2.2 Recommended Build Directory Structure

Trilinos/

Main Trilinos directory

SOLARIS_SERIAL/ LINUX_MPI/ configure packages/           �

From this directory 

execute:
../configure

from Solaris platform to 

create Solaris serial build

In this directory execute:
../configure �-with-mpi-compilers

from Linux platform to create 

Linux MPI build

Other Trilinos files 
and directories.

Location of all Trilinos 

packages.  Each package 
directory is self-contained.

Trilinos configure script that 

constructs build trees when 

run on target platform.

Figure 2. Recommended Layout for Trilinos Build Directo-
ries

Although it is possible to run ./configure from
the source tree (in the directory where the config-
ure file is located), we recommend separate build
trees. The greatest advantage to having a sepa-
rate build tree is that multiple builds of the libraries
can be maintained from the same source tree.
For example, both serial and parallel libraries can
be built. This approach also eliminates problems
with configuring in a ’dirty’ directory (one that has
already been configured in).

Key Point: . . . we recom-
mend separate build trees
. . . multiple builds of the li-
braries can be maintained
from the same source tree
. . . problems with configuring
in a ’dirty’ directory (are elim-
inated) . . .

Setting up a build tree is straight-forward. Figure 2 illustrates the recommended
layout. First, from the highest directory in the source tree (Trilinos for a repository
copy, Trilinos-3.0.2 for a distribution), make a new directory - for an MPI build on a

12



2.3 Configuring Trilinos TrilinosTM Users Guide

Linux platform, a typical name is LINUX MPI . Finally, from the new directory, type

Command: ../configure --with-mpi-compilers

(Note that various configure options might be necessary, see Section 2.3 for de-
tails.) Finally, type

Command: make

In summary:

cd Trilinos

mkdir LINUX_MPI

cd LINUX_MPI

../configure --with-mpi-compilers

make

At this point, the MPI version of Trilinos on a Linux platform is built and completely
contained in the LINUX MPI directory. No files outside this directory have been
modified. This procedure can be repeated for any number of build targets.

Note: Although we recommend the above location for build trees, they can be set
up anywhere.

2.3 Configuring Trilinos

The most common issue encountered when con-
figuring Trilinos is that it is nearly impossible to
determine what caused configure to fail based on
the standard output. If the output from configure
is inadequate, look at the config.log file (in the
buildtree) for the package that failed to configure
properly.

Key Point: . . . to determine
what caused configure to fail
. . . look at the config.log file
. . .

To determine which package failed to configure, look at the bottom of the output
from the configure command. One of the last lines will say something like:

configure: error: /bin/sh ’../../../packages/epetra/configure’

failed for packages/epetra

13



TrilinosTM Users Guide 2.3 Configuring Trilinos

This particular error indicates to look in packages/epetra/config.log .

To configure from a remote build tree, simply run the configure script in source tree
from the root of the build tree. In the example above, cd to the SOLARIS SERIAL
directory and type

Command: ../configure <configure options>

A detailed list of configure options can be seen by typing

Command: ./configure --help=recursive

from the top level of the source tree. This will display the help page for the Trilinos
level as well as all Trilinos packages that use Autoconf and Automake. The output
from this command is quite extensive. To view the help page for an individual
package, cd to the home directory for the package in the source tree and type

Command: ./configure --help

This command will also display the help page for Trilinos level options when used
from the Trilinos home directory in the source tree.

Many of the Trilinos configure options are used to describe the details of the build.
For instance, serial or mpi, all of the packages, or just a proper subset.

To configure for serial libraries, no action is necessary, but to configure for parallel
libraries, a user must append appropriate arguments to the configure invocation
line as described in “Trilinos Configuration Options”, section 2.4.

Also, to build the default set of Trilinos libraries, no action is necessary, but to ex-
clude a package that is built by default, AztecOO for example, append
--disable-aztecoo to the configure invocation line. Similarly, to include a pack-
age that is not currently built by default, Komplex for example, append --enable-komplex

to the configure invocation line.

Users are strongly encouraged to build only the
packages that are necessary because configur-
ing and building can take a long time. It is well
worth the time to look at which packages are build
by default enable and disable packages as neces-
sary.

Key Point: . . . build only
the packages that are nec-
essary because configuring
and building can take a long
time.

14



2.3 Configuring Trilinos TrilinosTM Users Guide

It is recommended that users always configure from the Trilinos level and use
--disable-<package> as required, rather than trying to configure from a lower
level. To see which packages are built by default and which ones aren’t, simply cd
to the Trilinos home directory and type

Command: ./configure --help

NOTES:

1. Enabling/Disabling package builds: The configure process is set up to
detect when a --disable-<package> option would break a package de-
pendency. For example, Ifpack depends on Epetra, so if a user wants to build
Ifpack, but types --disable-epetra , Epetra will be configured and built
anyway.

2. Installing libraries and header files: To install libraries and header files in
a particular location, use --prefix=<dir> on the configure line. If this
option is used, libraries will be located in <dir>/lib and header files in
<dir>/include/<package> .

3. Providing additional information to Autotools: Although Autotools will try
to determine all configuration information, the user must provide anything that
Autotools needs and cannot find. Also, if Autotools selects, for example, the
wrong BLAS library by default, the user must indicate which BLAS library to
use. Other issues such as standards non-compliance are also commonly
dealt with using configure options. If all required libraries (often the BLAS
and LAPACK) are located in standard places and no special compiler flags
are required, try configuring without providing additional information.

4. Sample configure invocation scripts:
Sample configure invocation scripts for a
wide variety of platforms can be found in
Trilinos/sampleScripts . These scripts are
generally named using the following conven-
tion: arch comm machine . For example,
sgi64 mpi atlantis .

Key Point: Sample con-
figure invocation scripts
for a wide variety of plat-
forms can be found in
Trilinos/sampleScripts .

Note that these scripts are examples only and are primarily useful for the
values of options such as LDFLAGS , CPPFLAGS , and CXXFLAGS . Do not
expect to be able to find a script that can be used without modification; try to
find a script for a similar machine to use as a guide.

The scripts in the repository are not always up to date. If a user submits
a script for a machine that few Trilinos developers have an account on, that
script may become obsolete if it is not updated by the user who submitted it.

15



TrilinosTM Users Guide 2.4 Trilinos Configuration Options

Users who create scripts for other machines are encouraged to check them
into the repository for the benefit of other users. Users who do not have ac-
cess to the repository can send scripts to trilinos-help@software.sandia.gov.

The following is an example configure invocation script for an SGI machine:

../configure --enable-mpi --with-mpi-libs=-lmpi \

--with-cflags=-64 --with-fflags=-64 \

--with-cxxflags="-64 -LANG:std -LANG:ansi-for-init-scope=ON \

-ptused -DMPI_NO_CPPBIND" \

LDFLAGS=" -64 -L/usr/lib64/mips4/r10000 -L/usr/lib64/mips4 \

-L/usr/lib64 " \

--enable-epetraext --enable-new_package \

--disable-komplex --enable-tsfcoreutils

2.4 Trilinos Configuration Options

The following options apply to all Trilinos packages unless an option doesn’t make
sense for a particular package (for example, a package that does not include any
Fortran code will not be sensitive to F77=g77 ), or otherwise noted. For options
specific to an individual package, cd to the home directory of the package and type

Command: ./configure --help

Basic Options

• --enable-examples

Build examples for all Trilinos packages (that are sensitive to this option). By
default, this option is enabled.

• --enable-tests

Build tests for all Trilinos packages (that are sensitive to this option). By
default, this option is enabled.

• --enable-debug

(NOX only.) This turns on compiler debugger flags. It has not been fully
tested. As an alternate, specify CXXFLAGS on the configure line.

• --enable-opt

(NOX only.) This turns on compiler optimization flags. It has not been fully
tested. As an alternate, specify CXXFLAGS on the configure line.

16



2.4 Trilinos Configuration Options TrilinosTM Users Guide

• --with-cppflags

Specify additional preprocessor flags (e.g., ”-Dflag -Idir”)

• --with-cxxflags

Specify additional C++ flags

• --with-ldflags

Specify additional linker flags (e.g., ”-Ldir”)

• --with-ar

Specify a special archiver command, the default is ”ar cru”.

Influential Environmental Variables

• CC

C compiler command.

• CFLAGS

C compiler flags.

• CXX

C++ compiler command.

• CXXFLAGS

C++ compiler flags.

• LDFLAGS

Specify linker flags.

• CPPFLAGS

C/C++ preprocessor flags.

• CXXCPP

C++ preprocessor.

• F77

Fortran 77 compiler command.

• FFLAGS

Fortran 77 compiler flags.

17



TrilinosTM Users Guide 2.4 Trilinos Configuration Options

MPI-Related Options

• --enable-mpi

Enables MPI mode. Defines HAVE MPI in the (Package) Config.h file. Will
test for the ability to preprocess the MPI header file and may test ability to link
with MPI. This option is rarely necessary as many of the below options also
turn MPI on.

• --with-mpi-compilers

Sets CXX = mpicxx (or mpiCC if mpicxx not available), CC = mpicc and F77
= mpif77. Automatically enables MPI mode. To use compilers other than
these, specify MPI locations with the below options. If none of these options
are necessary, use --enable-mpi to enable MPI mode. In this case, CXX,
CC, and F77 have to be set if the correct compilers are not chosen by default.

• --with-mpi=MPIROOT

Specify the MPI root directory. Automatically enables MPI mode. If this option
is set, --with-mpi-incdir and --with-mpi-libdir should not be used.
--with-mpi is a shortcut for setting
--with-mpi-libdir=MPIROOT/lib and
--with-mpi-incdir=MPIROOT/include .

• --with-mpi-libdir=DIR

Specify the MPI libraries location. Defaults to MPIROOT/lib if --with-mpi

is specified. If multiple directories must be specified, try
--with-ldflags="-L<dir1> -L<dir2>" instead.

• --with-mpi-libs="LIBS"

Specify the MPI libraries. Defaults to "-lmpi" if either --with-mpi or
--with-mpi-libdir is specified.

• --with-mpi-incdir=DIR

Specify the MPI include files location. Defaults to MPIROOT/include if
--with-mpi is specified. If multiple directories must be specified, try
--with-cppflags="-I<dir1> -I<dir2>" instead.

Developer-Related Options

• --enable-maintainer-mode

Enable make rules and dependencies not useful (and sometimes confusing)
to the casual installer.

18



2.5 Building Trilinos TrilinosTM Users Guide

2.5 Building Trilinos

If the configure stage completed successfully, just type

Command: make

and then, if --prefix was specified,

Command: make install

2.6 Tips for Making the Configure, Build, and
Install Processes More Efficient

Trilinos has grown to become a large piece of software. Not surprisingly, it can
take a very long time to configure and build all of Trilinos. Below are some tips for
speeding up the process:

• Only build the Trilinos libraries that are necessary.

An easy way to do this is to use the –disable-default-packages option. This
option allows users to easily specify exactly which packages should be built.
Packages that enabled packages are dependent on will be turned on auto-
matically, so don’t shy away from disabling all packages that are not used
directly. If a package configures and builds that was not enabled explicitly,
keep in mind that a package that was enabled probably depends on that
package.

• Consider disabling tests and examples.

The first time Trilinos is built on a machine, it is a good idea to build and run
some tests and examples. After that, disabling tests and examples can be
considered as a way to speed up the build process. To disable the tests and
examples for all packages, use the

Command: --disable-tests

and

Command: --disable-examples

19



TrilinosTM Users Guide2.6 Tips for Making the Configure, Build, and Install Processes More Efficient

options. The speedup realized by disabling tests and examples will vary
based on which packages are enabled; however, a speedup of about 1.6
could be expected for a “typical” mix of packages.

• Decrease build time on some machines by creating multiple jobs.

If -j (jobs) is a valid option for make , specifing the -j option with a value
of two times the number of processors that the machine has will typically
result in a faster build process. For example, on a dual processor machine,
try replacing make with

Command: make -j 4

during the build step.

On a single processor machine, the speedup is minimal; on a machine with
multiple processors, the speedup can be quite significant. For example,
speedups of 1.73 and 2.45 were observed on a dual processor machine and
a four processor machine, respectively. Using two times the number of pro-
cessors for the argument to the jobs option is only a suggestion based on
observed performance; those who are interested in achieving optimal perfor-
mance are encouraged to experiment with various values and to report their
findings to trilinos-help@software.sandia.gov . The -j can also be
passed without a corresponding value, in other words

Command: make -j

When used in this way, the number of jobs created is unlimited. For machines
with a large number of processors this appears to work in some situations,
but machines with fewer than four processors tend to get bogged down with
overhead.

Other important notes about the configure, build, and install process:

• Any code that links to Trilinos must define
HAVE CONFIG H .

Key Point: Any code that
links to Trilinos must define
HAVE CONFIG H .

• Do not attempt to specify optimization flags using the --with-cxxflags ,
--with-cflags , or --with-fflags options. Use CXXFLAGS , CFLAGS

and FFLAGS instead. Use --with-cxxflags , --with-cflags , and
--with-fflags to specify flags that are to be used in addition to the default
optimization flags.

• When creating a configure invocation script, be sure to use line continuation
characters properly. The characters should be at the end of every line, except
the last line, and should not be followed by any spaces.

20



2.7 Testing the Build TrilinosTM Users Guide

• To verify that the entire configure invocation script has been parsed by Auto-
conf, open the config.status file in the top level of the build tree and grep
for the string ”with options”. Here you will find all of the options that Autoconf
pulled from the invoke configure script.

• Autoconf cannot detect most spelling mistakes in configure invocation scripts.

• When experiencing problems during the make phase, it is often useful to
make clean before attempting to make again. Sometimes it even helps to
blow away the entire build tree and start over.

• When building with LAM under RH9 Linux, configure complains that it cannot
find mpi++.h. The message in the config.log file is:

/usr/include/mpi.h:1064:19: mpi++.h: No such file or directory

The following modified configure invocation works:

Command: ../configure --enable-mpi CXX="mpiCC -DLAM BUILDING"

• The build process will fail on OSX if “DropZip” is used to unzip the Trilinos
tarball. This utility truncates long file names.

• A list of FAQ’s for the Trilinos build process can be found online at
http://software.sandia.gov/Trilinos/faq.html .

2.7 Testing the Build

Trilinos contains a script that can be used for the purpose of verification testing.
Unfortunately, the process is currently tailored to fit the needs of developers. The
Trilinos team is in the process of creating a verification process that is more suitable
for users. For instructions on how to use the current process, go to

http://software.sandia.gov/trilinos/developer/test harness.html

and look at the section entitled “Running the Test Harness Locally”.

A simple alternative that provides a quick santity check is to execute one or more
Trilinos tests manually. For example, if Epetra was one of the packages that was
configured and built in the LINUX MPI build tree, the Epetra tests were not disabled
through the use of configure options, and lam mpi is installed, perform the following
series of steps to run the CrsMatrix tests:

21



TrilinosTM Users Guide 3 Ongoing Use and Support

cd Trilinos/LINUX_MPI/packages/epetra/test/CrsMatrix

lamboot

mpirun -np 3 ./CrsMatrix_test.exe

echo $status

lamhalt

For a serial build, the process is shorter:

cd Trilinos/LINUX_SERIAL/packages/epetra/test/CrsMatrix

./CrsMatrix_test.exe

echo $status

In either case, the status returned will be zero if the tests passed, nonzero if the
tests failed. Epetra has many other tests in subdirectories that are peers to the
CrsMatrix directory listed above. There are also examples that are located in the
example directory that is a peer to the test directory. Most other packages have a
number of tests and or examples that can be run using the same basic process.

3 Ongoing Use and Support

In this section we discuss how to report issues (bugs) and how to sign up for mail
lists.

3.1 Reporting Bugs

Feature and issue reports are tracked using Bugzilla [6]. Bugzilla can be found
on the web at http://software.sandia.gov/bugzilla . A Bugzilla account
is necessary for submitting bugs. Those interested can sign up at the website.
All bugs related to any Trilinos package that uses Bugzilla should be submitted
to Bugzilla. A secondary method of submitting bug reports is to send a note to
Trilinos-Bugs@software.sandia.gov .

Regardless of how an issue is submitted, the bug report should be filled out with as
much detail as possible. Specifically, be sure to include which version of Trilinos the
bug was discovered in and which platform(s) and compiler(s) the bug is associated
with. Also include any specific error messages and any additional information that
can be provided.

22



3.2 Signing Up for Mail Lists TrilinosTM Users Guide

NOTE: In the context of Bugzilla, “bug” can refer not only to an error in existing
code, but also to a desired enhancement. For example, a bug report should be
submitted to Bugzilla to report a segmentation fault that occurs when using an
existing Ifpack preconditioner, and a bug report should also be submitted to request
a new Ifpack preconditioner. “Issue” and “bug” are used interchangeably in this
discussion of Bugzilla.

3.2 Signing Up for Mail Lists

Email lists are maintained for Trilinos as a whole and for each package through
Mailman [3]. This tool can be found on the web at
http://software.sandia.gov/mailman/listinfo . Those interested in signing up
for one or more lists may do so at the website. A digest mode is available for those
who wish to receive a daily summary of list activity. Non-Sandians are able to sign
up for the “Users” and “Announce” lists. Sandians should keep this in mind when
posting to these lists.

The example mailing lists mentioned below are
to be used for issues relating to all of Trilinos.
The names for the lists pertaining to individ-
ual packages follow the same naming scheme,
simply replace “Trilinos” with the name of the
package. For example the list for Trilinos
users is called Trilinos-Users and the email ad-
dress is trilinos-users@software.sandia.gov

The list for Epetra users is called Epetra-
Users and the associated email address is
epetra-users@software.sandia.gov

Tip: While those who use
any individual Trilinos pack-
age are also “Trilinos users”,
the lists are not set up to rec-
ognize this. In other words,
those who subscribe to the
Epetra-Users mailing list do
not necessarily form a sub-
set of those who subscribe
to the Trilinos-Users mailing
list. This is also true of all
other list types. Keep this in
mind when subscribing and
posting to lists.

• Trilinos-Announce trilinos-announce@software.sandia.gov

All Trilinos release announcements and other major news.

• Trilinos-Users trilinos-users@software.sandia.gov

List for Trilinos Users. General discussions about the use of Trilinos.

23



TrilinosTM Users Guide REFERENCES

References
[1] David Day and Michael A. Heroux. Solving complex-valued linear systems via

equivalent real formulations. SIAM J. Sci. Comput., 23(2):480–498, 2001.

[2] Free Software Foundation. Gnu CVS Home Page.
http://www.gnu.org/software/cvs, 2004.

[3] Free Software Foundation. Gnu mailman home page.
http://www.gnu.org/software/mailman/mailman.html, 2004.

[4] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu,
Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps,
Andrew Salinger, Heidi Thornquist, Ray Tuminaro, James Willenbring, and Alan
Williams. An Overview of Trilinos. Technical Report SAND2003-2927, Sandia
National Laboratories, 2003.

[5] Michael A. Heroux, James M. Willenbring, and Robert Heaphy. Trilinos Devel-
opers Guide. Technical Report SAND2003-1898, Sandia National Laborato-
ries, 2003.

[6] The Mozilla Organization. Mozilla Bugzilla Home Page.
http://www.mozilla.org/projects/bugzilla, 2004.

[7] Ray S. Tuminaro, Michael A. Heroux, Scott. A. Hutchinson, and J. N. Shadid.
Official Aztec User’s Guide, Version 2.1. Sandia National Laboratories, Albu-
querque, NM 87185, 1999.

24



Commonly Used CVS Commands TrilinosTM Users Guide

Commonly Used CVS Commands

To access the Trilinos CVS repository, an account on software.sandia.gov is re-
quired. To request an account, send a note to trilinos-help@software.sandia.gov

. The following two environment variables must be set to access the repository:

Command: CVSROOT :ext:your user name@software.sandia.gov:/space/CVS

Command: CVS RSH ssh

(Replace “your user name” with your user name on software.sandia.gov.)

Below is a brief description of the CVS commands that are most commonly used
by Trilinos users. For a more complete listing of CVS commands, see the GNU
CVS Home Page [2].

• Checking Out a Working Copy: To checkout a working copy of the devel-
opment branch of Trilinos in the current directory from the CVS repository,
type

Command: cvs checkout Trilinos

To checkout a working copy of only one package of Trilinos in the current
directory, type

Command: cvs checkout <package name>

(Replace “package name” with the name of the package.

To checkout a different branch or a tagged version of Trilinos, type

Command: cvs checkout -r <name of branch or tag> Trilinos

• Updating a Working Copy: To update after a version has been obtained use
the cvs update command. First, cd to the directory that is to be updated
(often the Trilinos root directory). Then type:

Command: cvs -q update -dP

The “-q” option means “be somewhat quiet”. Try an update without the “-q” to
see exactly what the option does.

25



TrilinosTM Users Guide Commonly Used CVS Commands

The “-d” option means to get any new directories. For example, if a new
package is added to the repository, but the “-d” option is not used, that new
package will never appear in the working copy. However, the first time that
the “-d” option is used, all of the new package directories will be downloaded,
and from that time on, all CVS updates will update the directories that were
downloaded. It is good practice to include this option for every CVS update.

Finally the “-P” option “prunes” empty directories. This helps to keep the
directory structure from getting more cluttered than it needs to. For example,
the old “petra” and “tsf” packages were removed from the repository, but the
directory structures will remain if this option is not specified. If an empty
directory is needed, simply issue one update command without the “-P” and
the empty directories will be restored.

26


